+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
↳ QTRS
↳ Overlay + Local Confluence
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)
*1(s(x), y) → +1(*(x, y), y)
*1(s(x), y) → *1(x, y)
*1(p(x), y) → *1(x, y)
*1(p(x), y) → +1(*(x, y), minus(y))
MINUS(p(x)) → MINUS(x)
MINUS(s(x)) → MINUS(x)
+1(s(x), y) → +1(x, y)
+1(p(x), y) → +1(x, y)
*1(p(x), y) → MINUS(y)
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
*1(s(x), y) → +1(*(x, y), y)
*1(s(x), y) → *1(x, y)
*1(p(x), y) → *1(x, y)
*1(p(x), y) → +1(*(x, y), minus(y))
MINUS(p(x)) → MINUS(x)
MINUS(s(x)) → MINUS(x)
+1(s(x), y) → +1(x, y)
+1(p(x), y) → +1(x, y)
*1(p(x), y) → MINUS(y)
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
*1(s(x), y) → +1(*(x, y), y)
*1(s(x), y) → *1(x, y)
*1(p(x), y) → *1(x, y)
MINUS(s(x)) → MINUS(x)
MINUS(p(x)) → MINUS(x)
*1(p(x), y) → +1(*(x, y), minus(y))
+1(s(x), y) → +1(x, y)
+1(p(x), y) → +1(x, y)
*1(p(x), y) → MINUS(y)
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
MINUS(s(x)) → MINUS(x)
MINUS(p(x)) → MINUS(x)
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s(x)) → MINUS(x)
Used ordering: Combined order from the following AFS and order.
MINUS(p(x)) → MINUS(x)
[MINUS1, s1]
MINUS1: multiset
s1: multiset
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
MINUS(p(x)) → MINUS(x)
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(p(x)) → MINUS(x)
[MINUS1, p1]
MINUS1: multiset
p1: multiset
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
+1(s(x), y) → +1(x, y)
+1(p(x), y) → +1(x, y)
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+1(s(x), y) → +1(x, y)
Used ordering: Combined order from the following AFS and order.
+1(p(x), y) → +1(x, y)
s1 > +^12
s1: [1]
+^12: multiset
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
+1(p(x), y) → +1(x, y)
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+1(p(x), y) → +1(x, y)
[+^12, p1]
+^12: multiset
p1: multiset
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
*1(s(x), y) → *1(x, y)
*1(p(x), y) → *1(x, y)
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*1(s(x), y) → *1(x, y)
Used ordering: Combined order from the following AFS and order.
*1(p(x), y) → *1(x, y)
s1 > *^12
*^12: multiset
s1: [1]
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
*1(p(x), y) → *1(x, y)
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*1(p(x), y) → *1(x, y)
[*^12, p1]
*^12: multiset
p1: multiset
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(p(x), y) → p(+(x, y))
minus(0) → 0
minus(s(x)) → p(minus(x))
minus(p(x)) → s(minus(x))
*(0, y) → 0
*(s(x), y) → +(*(x, y), y)
*(p(x), y) → +(*(x, y), minus(y))
+(0, x0)
+(s(x0), x1)
+(p(x0), x1)
minus(0)
minus(s(x0))
minus(p(x0))
*(0, x0)
*(s(x0), x1)
*(p(x0), x1)